
A Value-Based Approach for Understanding Cost-Benefit
Trade-Offs During Automated Software Traceability

Alexander Egyed
Teknowledge Corporation

4640 Admiralty Way
Marina Del Rey, CA, USA

aegyed@acm.org

Stefan Biffl Matthias Heindl
Software Tech. & Interactive Systems

Vienna University of Technology
A-1040 Vienna, Austria

{biffl,heindl}@qse.ifs.tuwien.ac.at

Paul Grünbacher
Sys. Engineering & Automation

Johannes Kepler University
4040 Linz, Austria

Paul.Gruenbacher@jku.at

ABSTRACT
Many software development standards mandate establishing trace
links among software artifacts such as requirements, architectural
elements, or source code. However, for typical real-world systems
it is currently too expensive and error prone to generate highly
detailed trace links. We previously developed an approach to
semi-automatically generate trace links and analyzed cost-benefit
trade-offs in this context. We consider it as imperative to include
value considerations into planning the generation of trace
dependencies. This paper discusses three key trade-off decisions
for planning the trace generation process: (a) the level of detail of
traces among artifacts; (b) the value of the artifacts that are
traced; and (c) the points in time of trace generation (early vs.
late). We present cost-benefit considerations, empirical data, and
argue for a pragmatic value-based planning approach.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications], D.2.7 [Distribution,
Maintenance, and Enhancement]

General Terms
Documentation, Design, Experimentation.

Keywords
Value-Based Software Engineering, Automated Trace Analysis,
Cost-Benefit Trade-Off, Requirements Engineering.

1. INTRODUCTION
Establishing and maintaining trace links places a big burden on
software engineers. There are tools available that provide the
infrastructure for managing trace links (e.g., case tools,
requirements management tools). However, these tools do not free
the engineers from identifying links or from ensuring their
validity over time. Traceability of any kind is therefore hardly
adopted in industry, mainly due to cost and complexity issues [1].

Yet, the generation of trace links is increasingly mandated
through standards and industry is moving to adopt these standards
and even impose them on subcontractors (such as CMMI level 3).

There is thus a growing need to overcome the traceability
problem and researchers have been developing approaches for
generating trace links to assist the engineers [1,8,16]. These
approaches bring some relief but they strongly rely on the quality
of the input. Imprecise and sloppy input generally results in
lower-quality trace links, i.e., false trace links (false positives) or
missing trace links (false negatives). In the quest to produce a
perfect set of trace links (without false positives or false
negatives) one tends to forget that there is a significant cost-
quality trade-off involved, which affects the usage intensity of
trace links in practice.

1.1 Automatic Trace Link Generation
As manual trace link definition tends to be costly and error prone,
we use in our studies an automated approach called
Trace/Analyzer [7]. This approach uses software-artifacts-to-code
mappings as input and generates trace links among software
artifacts as output. In simple terms, the Trace/Analyzer approach
generates a trace link if and only if two artifacts overlap in their
common use of source code1. Such overlap may be obscured in
various ways (e.g., uncertainty, grouping, utility code) [8], but the
results are still usable in practice.

Artifact 1
Artifact 2

Artifact 3

Figure 1. Trace/Analyzer generates a trace link
between two artifacts with overlapping code.

However, the quality of the generated trace links is strongly
affected by the level of detail of the input. It is up to the engineers
to define whether they map artifacts to code on the level of
packages, classes, methods, or even individual lines.

1.2 Value-Based Software Engineering
We believe that value considerations are needed for planning
software traceability in a sustainable way. Currently, the indirect
contribution of trace links to product value is often based on a

1 Note: not every overlap results in a trace link. In previous work we

identified the problem of “utility code” that should be ignored during
trace generation. This issue was investigated in detail in [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TEFSE 2005, November 8th, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

Published in Proceedings of the 3rd International Workshop on Traceability in Emerging Forms of Software Engineering (TEFSE),
in conjunction with the 20th IEEE/ACM International Conference on Automated Software Engineering (ASE), Long Beach, CA.
November 8th, 2005.

value-neutral and purely technical perception. This leads to an
underestimation of the need to align the incentives of success-
critical stakeholders to generate and fully exploit the potential of
trace links. Some initial results have been reported that consider
value aspects in requirements traceability [9,13]. However, these
reports have not conducted a cost-benefit analysis to find out
when and how intensive tracing is worthwhile in a specific
context.

This paper proposes a value-based approach to trace generation
and rework. The recently defined paradigm of value-based
software engineering [2] brings a fresh perspective on trace
generation and maintenance. A motivation for value-based
software engineering is that "much of current software
engineering practice and research is done in a value-neutral
setting, in which every requirement, use case, object, and defect is
treated as equally important" [3]. The premise of value-based
software development is that not every software artifact should be
considered equally important. In the context of software
traceability we thus hypothesize that not all trace links are equally
important. We expect that taking a value-based perspective can
reduce costs by directing efforts to software artifacts with a higher
perceived stakeholder value.

1.3 Research Questions: Cost-Benefit Trade-
Off of Trace Link Generation Alternatives
The main issues of our research is to investigate the impact of
trace link generation quality (effort/cost) on the quality of
applications that analyze trace links, such as: change impact
analysis completeness analysis, or consistency checking; proof of
compliance between contractor and supplier requirements, proof
of compliance between acceptance test cases and user
requirements, requirements coverage of test cases. A better
understanding of this relationship allows improved planning of
Intrace generation for aligning the cost-benefit considerations of
the involved stakeholders.

In this paper we discuss three key trade-off issues for planning the
trace generation process: (a) the level of detail of traces among
artifacts (package, class, method levels); (b) the value of the
artifacts that are traced (high-value artifacts justify a higher level
of tracing effort); and (c) the points in time of trace generation
(early vs. late). We present cost-benefit considerations , empirical
data, and argue for a pragmatic value-based planning approach.

The simple question we asked ourselves was whether an increase
in the quality of trace links does justify the extra costs. While it is
out of the scope of this paper to provide a generally valid answer,
we can describe cost-benefit implications of trace generation and
later trace link rework. We also suggest value-based software
engineering [3] as a possible solution to maximize the benefits of
trace links in relation to their cost.

The following three issues are discussed in more detail in the
remainder of this paper: (1) Is a perfect set of artifact-to-code
mappings necessary as input to trace link generation? Are false
positives and false negatives acceptable? What are the
implications of errors in trace links? (2) Is it necessary to have all
trace links on the same level of detail? Are trace links of different
quality acceptable? (3) What happens if we discover during trace
generation that a previously computed trace links is of insufficient
quality for the planned purpose?

2. QUALITY ISSUES OF TRACE
DEPENDENCIES
The benefits of trace links2 are a direct function of their
usefulness to applications/humans consuming them. Trace links
are consumed by applications like requirements conflict analysis,
consistency checking, and change impact analysis. Engineers use
trace links for navigation to quickly locate related artifacts. The
benefits of trace links depend on the project context, the
contribution of the application to the project, and the quality of
the traces as input to the application. The benefit has to be
determined in context as precondition to optimize the investment
in input.

Trace links are either generated manually (by the engineers) or
(semi-)automatically based on some initial input. Furthermore,
trace links can be generated as soon as new artifacts are created or
”on demand”, i.e., right before the analysis of trace links. These
parameters may have significant impact on the cost and benefit of
trace links in a project.

Manual trace generation needs systematic guidance. Otherwise,
the quality of traces may be insufficient for applications. Also, the
generation of trace links at the time they are needed by an
application may cause significant delays at sensitive points of
time (e.g., during the final stages before acceptance by the
customer). Furthermore, the original developers may no longer be
available or important details of their work may have been
forgotten leading to a much more expensive and error-prone
identification of the trace links.

(Semi-)automated approaches typically require some input but are
able to compute (some) trace links without additional intervention
and at significantly less additional cost than needed for manual
trace generation3. In case of the Trace/Analyzer approach, the
input is given in form of initial software artifacts to source code
mappings. This input has to be generated manually or through
testing as discussed in [7]. The advantage of the Trace/Analyzer
approach is that the required input only rises linearly with the size
of the software product although the number of trace links
normally rises exponentially [10]. As discussed above, the input
to the Trace/Analyzer can be provided at arbitrary levels of detail
– mappings between artifact and packages, classes, methods, or,
even, lines of code. Irrespective of the level of detail, the input
may contain errors (i.e., a wrong or missing mapping) which
negatively affect the correctness of the generated trace links.

3. KEY DECISIONS OF TRACE
PLANNING
In this section we take a look at three key dimensions of trace
generation that have an impact on trace planning and the cost-
benefit of the involved stakeholder: (a) empirical data on the
investment into trace link generation at different levels of detail;
(b) trade-off models for the investment in links among artifacts of

2 In this paper we focus on direct benefits from trace link applications;

note that important indirect benefits such as standard compliance may a
major motivation for tracing.

3 Note that changes in the mix of manual and automated tracing can have
significant impact on the cost of trace generation; for simplicity we
assume in this work a stable mix of manual and automated tracing.

different levels of value; and (c) a cost-benefit trade-off example
regarding investment at different points in time.

3.1 Empirical Studies on Level of Detail and
Quality of Trace Link Generation
In recent empirical studies [12,13] we found only limited
economic value in improving the level of detail of trace links
beyond a certain level. Some trace applications may not need
trace link input on a very fine-grained level of detail. Further, we
observed a diseconomy of scale: the quality of trace links did not
rise linearly with the effort invested for tracing on a more detailed
level, but additional investment had lower additional impact on
the quality of generated trace links (depicted below in Figure 2
for the open-source ArgoUML modeling tool suite).

ArgoUML consists of 49 packages, 645 classes, and over 6000
methods. The requirements-to-classes-input was an order of
magnitude more expensive to generate than the requirements-to-
packages-input. In turn, the requirements-to-methods-input was
another order of magnitude more expensive to generate. However,
one would expect that an increasing level detail would define the
code overlap in more exact terms and thus produce better quality
trace links. We thus hypothesized that the level of granularity of
the input directly affects the quality of the generated links (i.e., its
false positive rate). Figure 2 confirms this hypothesis by depicting
a decreasing rate of false positives (y-axis) with increasing level
of detail (x-axis). However, the number of false positives was not
reduced in a linear rate.

100%

110%

120%

130%

140%

150%

160%

170%

0 1000 2000 3000 4000 5000 6000 7000

Tracing detail levels - number of elements

Fa
ls

e
po

si
tiv

es
 (1

00
%

 =
 fi

ne
st

 le
ve

l)

Figure 2. Marginally decreasing share of false trace links with

strongly increasing input level of detail.
A 10-fold effort increase by providing input in form of classes
(more detail) instead of packages resulted in a 42% reduction of
(the known set of) false positives in the set of generated trace
links among the input software artifacts. This is only a 2-fold
increase in output quality for a 10-fold increase in input cost.
Even worse, another 10-fold increase in input cost by providing
the input in form of mappings to methods instead of classes only
resulted in an additional 16% reduction of (the known set of) false
positives. This is a rather low increase in quality for another 10-
fold increase in cost (see incline of slopes in Figure 2). Note:
since we did not know the actual number of false positives, we

based this data on the finest level of granularity (method-level).
This level is labeled 100% on the y-axis.

We conducted similar experiments with two other case
studies [12] and observed similar diseconomies of scale. It must
be noted that these experiments only considered the initial cost of
generating trace links with the Trace/Analyzer approach. There is
also a cost for maintaining trace links over time. Thus we assess a
lower boundary of the true cost of traceability.

3.2 Value of Artifacts and Value of Trace
Links
It is generally true that applications consuming traceability links
can produce 100% correct results only if the input is 100% correct
(in some cases not even then). Consumers of trace links are no
exception. Since it is hard to produce 100% correct and complete
trace links, it is clear that the application will suffer. We showed
earlier that it is one order of magnitude cheaper to produce input
for the Trace/Analyzer on the level of artifact-to-class mapping
instead of the artifact-to-method mapping. This significant saving
only results in a 16% quality reduction (false positives) of the
resulting trace links.

However, such an across-the-board quality reduction is a value-
neutral solution because it affects the quality of all trace links
equally. While an engineer may be willing to sacrifice benefits to
save cost, we believe that such a process must be guidable. A
better solution would be to generate trace links of some minimal
quality initially and to rework them later when a higher quality is
needed. This solution assumes that (a) not every trace link is
needed and generating and reworking trace links is wasteful in
cases where they are not needed; (b) some applications may only
require a certain quality and generating and reworking trace links
is wasteful if the quality improvements do not translate into
benefits.

Value-based software engineering places value on different
software artifacts. For example, requirements can be classified as
critical, important, or nice to have. Even if the “nice to have”
requirements are implemented, their correctness is not as
important as “critical” requirements. We believe the
Trace/Analyzer should be enhanced to consider such value
information through the use of granularity: low-value artifacts are
mapped to the class level; high-value artifacts are mapped to the
method level.

Table 1. Artifact value and resulting trace link quality.

Artifact 1

Low value High value

Low value Low-detail
trace link

Low-detail
trace link Artifact

2
High value Low-detail

trace link
High-detail
trace link

In other words, a higher-value artifact, such as a critical
requirement, is mapped on a finer level of detail than a lower-
value artifact. Since the Trace/Analyzer determines trace links
based on overlaps, it will produce trace links of the highest
quality among high-value artifacts because of their finer-grained

overlaps. Likewise, the quality of trace links among lower-value
artifacts is worse because their overlaps are based on a coarser-
grained level of detail. Table 1 summarizes the four types of
overlaps and their quality implications. The value classification
thus directly translates to quality implications for trace links – and
even more importantly, it also translates to their use in
applications. For example, the requirements conflict analysis
produces higher quality conflicts among higher quality
requirements. However, this solution still places equal value on
all pieces of source code. That is, the artifact-to-code mapping is
done equally for the entire code of an artifact. This is also
unnecessary. Trace links are established on the basis of overlaps.
If there is no overlap between two high-value artifacts, then there
is no need to create artifact-to-code mappings entirely on a finer
level of detail. Only the overlaps among high-value requirements
need a finer-grained level of detail. This is because the quality of
a trace link is a direct result of the weakest level of granularity of
the involved artifacts.

High -Value
Artifact 1

High -Value Artifact 2

Low -
Value

Artifact 3

Highest -detail
area

Figure 4. High level of detail only necessary for overlaps

among high-value artifacts.
Figure 4 depicts this issue for three artifacts where artifacts 1 and
2 are of high value and artifact 3 is of low value. Areas of artifacts
that do not overlap with other artifacts do not cause trace links.
There is thus no benefit in investing effort into these areas. Areas
where a high-value artifact overlaps with a low-value artifact only
need to be considered on the level of granularity of the low-level
artifact. There is no benefit in investing effort in increasing the
granularity of one of the overlapping artifacts without doing the

same for the other artifact. Only the overlapping areas of high-
value artifacts should be of the same, finest level of detail.

But how do we know about the overlapping areas before we have
gathered and analyzed the input of the Trace/Analyzer? This can
be done by initially requiring all input in form of the coarsest-
level of detail. The mapping of those overlaps can then be refined,
if they belong to high-value artifacts.

3.3 Investment into Tracing at Different
Times in Development
The trace links are, by themselves, of little benefit. Their benefit
is usually a direct result of their usefulness to support applications
that require trace links as input. For example, we previously
developed an approach to requirements conflict analysis [11] that
takes requirements, requirements trace links, and requirements
classifications as input and computes potential requirements
conflicts as a result. A false trace link (false positive) may result
in a false conflict and a missing trace link (false negative) may
result in a missing conflict. The quality of the trace links thus
directly affects the quality of the requirements conflict analysis
(an application).

If the quality of the generated trace links is low then the quality of
the results produced by applications consuming these links is also
reduced. Thus, an important value consideration is how much is
“good enough” [3]? Is there a quality threshold trace links must
meet for them to be useful for follow-on applications? Since low-
quality traces are cheaper to produce than high-quality traces, a
follow-on question is whether there is a cost-benefit trade-off
where the cost of producing higher-quality traces is higher than
the benefits gained by their use? Recall that in case of the
Trace/Analyzer approach, it takes an order of magnitude more
input cost to marginally improve the quality of trace links. It is
not obvious that this increase in input cost is justifiable in a
project context. Figure 3 depicts three options for possible cost-
benefit implications of trace generation, based on the assumption
of .less-than-perfect traces, i.e. daily tracing reality.

Trace generation requires a certain input and produces some trace
links as output. The cost of this input typically directly relates to
effort (usually with some manual overhead), must be offset by the
benefits gained from the results of the trace analysis applications.

Trace
Generation

input

quality = x''
x''<y''

result

quality = x'

Application 1
Application 1

results

quality = x

Application 1

Trace Rework
from x to y Application 1

result results

quality = yquality = y

(1)

Application 1
Application 1

(2)

(3)

Figure 3. The cost-benefit implication of trace generation and trace rework

If the quality of trace links is below the level of usefulness for
some application, then the trace links serve no real purpose. Thus,
the cost can never be recouped as there are no benefits. Trace
generation in this situation is not economical (option 1).

If the quality of the trace links is above the usefulness threshold
then the trace links are useful to applications and generate some
benefit. The benefit is offset not only by the cost of the trace
generation but also the cost of the application. However, an
important consideration is that higher-quality trace links do not
necessarily translate into more benefits. As we have seen in
Figure 2, increasing the quality of trace links can come at a high
cost which may never be recouped by the application. Traces of
too high quality may thus also uneconomical (option 2).

If the trace generation produces trace links of insufficient quality
then there is the option of a later trace rework (option 3). Trace
rework improves the quality of trace links, but the cost of trace
generation followed by later trace rework is likely to be higher
than having done the initial trace generation to the desired quality
because (1) knowledgeable engineers may have left the project or
(2) they may not remember the solution details well enough.
Trace rework is thus a way of improving the quality of trace links
to make them useful for applications but at the expense of
additional cost which reduces the cost-benefit ratio.

3.4 Impact of change over time on trace
quality
The initial saved effort on trace generation is counteracted by loss
of rework in case the less detailed traces are inadequate. The
amount of rework depends on how much of the work not done has
to be done and how much more difficult this is relative to
generating a trace at development time by the original developers.

However, trace links also degrade over time while the software
product evolves (i.e., as the product changes, its traces must be
updated). Consequently their application suffers. Therefore, the
benefits of the application of trace links change with time even if
the input stays the same (assuming that the software product is
evolved during that time). Even (semi-)automated approaches are
affected by this erosion. For example, every source code change
potentially affects the mapping between the artifacts and source
code and thus the input to the Trace/Analyzer approach may
become increasingly incorrect over time. It follows that the trace
links generated by the Trace/Analyzer approach decrease in
quality over time. Trace rework is thus necessary even if the
initial trace generation produced sufficient quality trace links. To
minimize the cost of trace rework, it should be done at the same
time the software product is changed to avoid delays during their
application and to benefit from the fresh knowledge. Still, it is not
obvious what changes to a software product cause changes to its
trace links, which may keep engineers from keeping trace links
current and thus loose the potential benefit.

In summary trace planning has to face difficult decisions: a low
trace quality may be a cost saving measure initially but it may
factually be counter productive because low-quality trace links
may not be useful later and thus generate no benefit. A high
traceability quality may be needlessly expensive and thus may
also be counter productive. And, the cost of trace rework must be
considered, especially if the trace links are generated early on
while the software product evolves.

4. Related Work
A work similar to our approach has been presented in [5]. This
paper describes an approach named TraCS (Traceability for
Complex Systems) to maximize the return-on-investment of the
requirements traceability effort through the strategic deployment
of a heterogeneous set of traceability techniques. Links are
established strategically to optimize the ROI while minimizing
the risk inherent to software evolution.
The approach presented in this paper is also related to other
approaches aiming at automating requirements traceability.
Antoniol et al. discuss a technique for automatically recovering
traceability links between object-oriented design models and code
based on determining the similarity of paired elements from
design and code [1]. Murphy et al. [14] present an approach for
automating the identification of links between high-level models
and source code based on software reflexion models.
Spanoudakis et al. [16] have contributed a rule-based approach
for automatically generating and maintaining traceability
relations. Cysneiros, Zisman, and Spanoudakis have also
demonstrated how their approach allows to establish links
between organizational models specified in i* and software
systems models represented in UML [6].
In the Goal-Centric Traceability (GCT) approach Cleland-Huang
et al. model non-functional requirements and their
interdependencies as softgoals in a Softgoal Interdependency
Graph. In their approach a probabilistic network model is used to
retrieve links between classes affected by a functional change and
elements within the graph [4].
A forward engineering approach is taken by Richardson and
Green [15] in the area of program synthesis. Traceability relations
are automatically derived between parts of a specification and
parts of the synthesized program.
These approaches however, do not consider cost-quality
considerations. The recently defined paradigm of value-based
software engineering [2,3] brings a new view into the trace
analysis research area. Taking a value-based perspective can help
save cost and by emphasizing investing effort on software
artifacts with a perceived higher stakeholder value. Some initial
results have been reported that consider value aspects in
requirements traceability [9,12,13]. However, these approaches
have not conducted a cost-quality analysis to find out when and
how intensive tracing in a specific context is worthwhile.

5. CONCLUSIONS AND FURTHER WORK
As traceability is mandated by software standards, software
engineers and managers need support to plan the generation of
trace links: (a) the level of detail of trace links between artifacts
and (b) the effort for trace generation at different times during
development.

In this paper we applied principles of value-based software
engineering to traceability and raised the issue of the value of
trace links and the level of effort investment into generating and
maintaining/reworking trace links. Based on an initial cost-benefit
model we explored several options to guide the effort of trace
generation with three parameters: (a) the level of detail of traces
among artifacts (package, class, method levels); (b) the value of
the artifacts that are traced (high-value artifacts justify a higher

level of tracing effort); and (c) the points in time of trace
generation (early vs. late).

While we could show the need for better understanding the cost
and benefit of both trace generation and usage during trace
analysis, we see some fundamental open issues that need further
work and discussion at the workshop: (1) How can we determine
the benefit of traceability in some tangible measure such as
“saved engineering hours” that allows balancing these benefits
with the investment into trace generation?; (2) How can we
describe the relationship between the quality of input traces to
trace analysis application and the quality of the output of such
analysis applications (compare Figure 3)?

The ability to answer these questions will largely determine
whether an alignment of the stakeholder views on cost and
benefits of tracing can be achieved, which in turn will determine
the rate of adoption of tracing in practice.

6. REFERENCES
 [1] Antoniol G., Caprile B., Potrich A., and Tonella P.: Design-

Code Traceability Recovery: Selecting the Basic Linkage
Properties. Journal Science of Computer Programming 40(2-
3), 2001, 213-234.

 [2] Biffl, S., Aurum, A., Boehm, B. W., et al: Value-based
Software Engineering. Springer Verlag, 2005.

 [3] Boehm B.: Value-Based Software Engineering. Software
Engineering Notes 28(2), 2003, 1-12.

 [4] Cleland-Huang J., Settimi R., BenKhadra O., Berezhanskaya
E., and Christina S.: "Goal-centric traceability for managing
non-functional requirements," Proceedings of the 27th
International Conference on Software Engineering, St. Louis,
MO, 2005, pp.362-371.

 [5] Cleland-Huang, J., Zemont, G., and Lukasik, W.: "A
Heterogeneous Solution for Improving the Return on
Investment of Requirements Traceability," Proceedings of
the International Conference on Requirements Engineering
(RE), Kyoto, Japan, 2004, pp.230-239.

 [6] Cysneiros F.G., Zisman A., and Spanoudakis G.A.: "
Traceability Approach for i* and UML Models,"
Proceedings of Software Engineering for Large-Scale Multi-
Agent Systems Workshop Report (SELMAS 03), Portland,
OR, 2003.

 [7] Egyed A.: A Scenario-Driven Approach to Trace
Dependency Analysis. IEEE Transactions on Software
Engineering (TSE) 29(2), 2003, 116-132.

 [8] Egyed, A.: "Resolving Uncertainties during Trace Analysis,"
Proceedings of the 12th ACM SIGSOFT Symposium on
Foundations of Software Engineering (FSE), Newport
Beach, California, November 2004, pp.3-12.

 [9] Egyed, A.: "Tailoring Software Traceability to Value-Based
Needs," Book Chapter in Value-Based Software
Engineering, Springer Verlag, 2005.

 [10] Egyed, A. and Grünbacher, P.: "Automating Requirements
Traceability - Beyond the Record and Replay Paradigm,"
Proceedings of the 17th International Conference on
Automated Software Engineering (ASE), Edinburgh,
Scottland, UK, September 2002, pp.pp. 163-171.

 [11] Egyed A. and Grünbacher P.: Identifying Requirements
Conflicts and Cooperation: How Quality Attributes and
Automated Traceability Can Help. IEEE Software 21(6),
2004, 50-58.

 [12] Egyed, A., Heindl, M., Biffl, S., and Grünbacher, P.:
"Determining the Cost-Quality Trade-off for Automated
Software Traceability," Proceedings 20th IEEE/ACM Int.
Conference on Automated Software Engineering (ASE),
Long Beach, CA, 2005, pp.(to appear as a 4-page short
paper).

 [13] Heindl, M. and Biffl, S.: "A Process for Value-based
Requirements Tracing - A Case Study on the Impact on Cost
and Benefit," Proceedings of the European Software
Engineering Conference and Foundations of Software
Engineering (ESEC/FSE), Lisboa, Portugal, September
2005.

 [14] Murphy, G. C., Notkin, D., and Sullivan, K.: "Software
Reflexion Models: Bridging the Gap Between Source and
High-Level Models," Proceedings of the 3rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
New York, NY, October 1995, pp.18-28.

 [15] Richardson, J. and Green, J.: "Automating traceability for
generated software artifacts," Proceedings of the 19th
Automated Software Engineering Conference (ASE), Linz,
Austria, 2004, pp.24-33.

 [16] Spanoudakis G., Zisman A., Perez-Minana E., and Krause P.
Rule-based generation of requirements traceability relations.
Journal of Systems and Software 72(2), 2004, 105-127.

